Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload.
نویسندگان
چکیده
The stromal interacting molecule (STIM1) is pivotal for store-operated Ca(2+) entry (SOC). STIM1 proteins sense the Ca(2+) concentration within the lumen of the endoplasmic reticulum (ER) via an EF-hand domain. Dissociation of Ca(2+) from this domain allows fast oligomerization of STIM1 and the formation of spatially discrete clusters close to the plasma membrane. By lifetime-imaging of STIM1 interaction, the rearrangement of STIM1, ER Ca(2+) concentration ([Ca(2+)](ER)) and cytosolic Ca(2+) signals ([Ca(2+)](cyto)) we show that [Ca(2+)](cyto) affects the subcellular distribution of STIM1 oligomers and prevents subplasmalemmal STIM clustering, even if the ER is depleted. These data indicate that [Ca(2+)](cyto), independently of the ER Ca(2+) filling state, crucially tunes the formation and disassembly of subplasmalemmal STIM1 clusters, and, thus, protects cells against Ca(2+) overload resulting from excessive SOC activity.
منابع مشابه
Oligomerization and Ca2+/calmodulin control binding of the ER Ca2+-sensors STIM1 and STIM2 to plasma membrane lipids
Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differ...
متن کاملCalsequestrin-1 Regulates Store-Operated Ca2+ Entry by Inhibiting STIM1 Aggregation.
BACKGROUND/AIMS Stromal interacting molecule-1 (STIM1) aggregation and redistribution to plasma membrane to interact with Orai1 constitute the core mechanism of store-operated Ca2+ entry (SOCE). Previous study has revealed that calsequestrin-1 (CSQ1) regulates SOCE in HEK293 cells through interacting with STIM1 and inhibiting STIM1/Orai1 interaction. Here, we further investigate how CSQ1/STIM1 ...
متن کاملSTIM2 Is a Feedback Regulator that Stabilizes Basal Cytosolic and Endoplasmic Reticulum Ca2+ Levels
Deviations in basal Ca2+ levels interfere with receptor-mediated Ca2+ signaling as well as endoplasmic reticulum (ER) and mitochondrial function. While defective basal Ca2+ regulation has been linked to various diseases, the regulatory mechanism that controls basal Ca2+ is poorly understood. Here we performed an siRNA screen of the human signaling proteome to identify regulators of basal Ca2+ c...
متن کاملSubplasmalemmal mitochondria modulate the activity of plasma membrane Ca 2 +
Mitochondria are dynamic organelles that modulate cellular Ca2+ signals by interacting with Ca2+ transporters on the plasma membrane or the endoplasmic reticulum (ER). To study how mitochondria dynamics affects cell Ca2+ homeostasis, we overexpressed two mitochondrial fission proteins, hFis1 and Drp1, and measured Ca2+ changes within the cytosol and the ER in HeLa cells. Both proteins fragmente...
متن کاملMitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry.
Store-operated Ca(2+) entry (SOCE) is established by formation of subplasmalemmal clusters of the endoplasmic reticulum (ER) protein, stromal interacting molecule 1 (STIM1) upon ER Ca(2+) depletion. Thereby, STIM1 couples to plasma membrane channels such as Orai1. Thus, a close proximity of ER domains to the plasma membrane is a prerequisite for SOCE activation, challenging the concept of local...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 121 Pt 19 شماره
صفحات -
تاریخ انتشار 2008